Self-similar scaling limits of non-increasing Markov chains
نویسندگان
چکیده
We study scaling limits of non-increasing Markov chains with values in the set of non-negative integers, under the assumption that the large jump events are rare and happen at rates that behave like a negative power of the current state. We show that the chain starting from n and appropriately rescaled, converges in distribution, as n → ∞, to a non-increasing self-similar Markov process. This convergence holds jointly with that of the rescaled absorption time to the time at which the self-similar Markov process reaches first 0. We discuss various applications to the study of random walks with a barrier, of the number of collisions in Λ-coalescents that do not descend from infinity and of non-consistent regenerative compositions. Further applications to the scaling limits of Markov branching trees are developed in the forthcoming paper [11]. AMS subject classifications: 60J05, 60J25, 60J75, 60G28.
منابع مشابه
Invited Talks
Bénédicte Haas, University of Paris-Dauphine, France Limits of Non-increasing Markov Chains and Applications to Random Trees and Coalescents Consider a non-increasing Markov chain with values in the set of non-negative integers, starting from a large integer !. We describe its scaling limit as ! → ∞, under the assumption that the large jump events are rare and happen at rates that behave like a...
متن کاملScaling limits of Markov branching trees, with applications to Galton-Watson and random unordered trees
We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...
متن کاملScaling limits of Markov branching trees
We consider a family of random trees satisfying a Markov branching property. Roughly, this property says that the subtrees above some given height are independent with a law that depends only on their total size, the latter being either the number of leaves or vertices. Such families are parameterized by sequences of distributions on partitions of the integers, that determine how the size of a ...
متن کاملRegenerative Tree Growth: Binary Self-similar Continuum Random Trees and Poisson–dirichlet Compositions1 by Jim Pitman
We use a natural ordered extension of the Chinese Restaurant Process to grow a two-parameter family of binary self-similar continuum fragmentation trees. We provide an explicit embedding of Ford’s sequence of alpha model trees in the continuum tree which we identified in a previous article as a distributional scaling limit of Ford’s trees. In general, the Markov branching trees induced by the t...
متن کاملRegenerative tree growth: binary self-similar continuum random trees and Poisson-Dirichlet compositions
We use a natural ordered extension of the Chinese Restaurant Process to grow a two-parameter family of binary self-similar continuum fragmentation trees. We provide an explicit embedding of Ford’s sequence of alpha model trees in the continuum tree which we identified in a previous article as a distributional scaling limit of Ford’s trees. In general, the Markov branching trees induced by the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011